Changes between Version 1 and Version 2 of u/zchen/isothermalwind


Ignore:
Timestamp:
02/16/14 14:24:26 (11 years ago)
Author:
Zhuo Chen
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/zchen/isothermalwind

    v1 v2  
    1313$u=a$ is a singular point and $\frac{2a^2}{r}-\frac{GM}{r^2}=0$ is critical point. If the wind is to experience constant acceleration, u will exceed a at some radius such that the equation become singular. Therefore the reasonable picture for the constant accelerating wind is that numerator goes to 0 as the denominator goes to 0.
    1414
    15 Let $r=r_c$ when $\frac{2a^2}{r}-\frac{GM}{r^2})=0$ therefore $r_c=\frac{GM}{2a^2}$
     15Let $r=r_c$ when $\frac{2a^2}{r}-\frac{GM}{r^2}=0$ therefore $r_c=\frac{GM}{2a^2}$
    1616
    17 $\frac{2a^2}{r}-\frac{GM}{r^2})<0$ while $u<a$
     17$\frac{2a^2}{r}-\frac{GM}{r^2}<0$ while $u<a$
    1818
    19 $\frac{2a^2}{r}-\frac{GM}{r^2})>0$ while $u>a$
     19$\frac{2a^2}{r}-\frac{GM}{r^2}>0$ while $u>a$
    2020
    21 $\frac{2a^2}{r}-\frac{GM}{r^2})=0$ while $u=a$
     21$\frac{2a^2}{r}-\frac{GM}{r^2}=0$ while $u=a$
    2222
    23 Any other combination will not give constant accelerating wind but wind that experience deceleration in some region. Like supersonic wind
     23Any other combination will not give constant accelerating wind but wind that experience deceleration in some region. Like supersonic wind in $r<r_c$ region will decelerate and subsonic wind in $r>r_c$ region will also decelerate.
     24
     25Using De l'Hopital's rule at $r=r_c$
     26
     27$\frac{1}{u}\left.\frac{du}{dt}\right|_{r=r_c}=(-\frac{2a^2}{r_c^2}+\frac{2GM}{r_c^3})/(\frac{2udu}{dr})=\frac{a^2}{r_c^2}\left.\frac{udu}{dr}\right|_{r=r_c}$
     28
     29This also shows that numerator and denominator converge to 0 at the same rate. The mathematical appropriation of the isothermal wind is justified.
     30
     31$\left.\frac{du}{dt}\right|_{r=r_c}=\frac{\pm 2a^2}{GM}$
     32
     33Remark: use the