Changes between Version 5 and Version 6 of u/zchen/isothermalwind
- Timestamp:
- 02/18/14 13:12:55 (11 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/zchen/isothermalwind
v5 v6 25 25 Using De l'Hopital's rule at $r=r_c$ 26 26 27 $\frac{1}{u}\left.\frac{du}{d t}\right|_{r=r_c}=(-\frac{2a^2}{r_c^2}+\frac{2GM}{r_c^3})/(\frac{2udu}{dr})=\frac{a^2}{r_c^2}\left.\frac{udu}{dr}\right|_{r=r_c}$27 $\frac{1}{u}\left.\frac{du}{dr}\right|_{r=r_c}=(-\frac{2a^2}{r_c^2}+\frac{2GM}{r_c^3})/(\frac{2udu}{dr})=\frac{a^2}{r_c^2}\left.\frac{udu}{dr}\right|_{r=r_c}$ 28 28 29 29 This also shows that numerator and denominator converge to 0 at the same rate. The mathematical appropriation of the isothermal wind is justified. 30 30 31 $\left.\frac{du}{d t}\right|_{r=r_c}=\frac{\pm 2a^2}{GM}$31 $\left.\frac{du}{dr}\right|_{r=r_c}=\frac{\pm 2a^2}{GM}$ 32 32 33 33 We can also solve (4)